ASX Announcement

5th November 2021

ASX CODE: BMR

BOARD

Nick Jorss Chairman

David A-IzzeddinTechnical Director

Andrew GilbertDirector – Operations

HEAD OFFICE

Suite 606 Level 6 10 Market St Brisbane QLD 4000

+617 3212 6299 ballymoreres.com

DRILLING COMMENCES ON RAVENSWOOD PROJECT

Drilling has commenced at Seventy Mile Mount and Matthews Pinnacle breccia hosted gold-copper targets, located within the highly prospective Mount Leyshon Corridor, close to the Mount Leyshon mine.

Initially three holes will be drilled to test these targets with first results expected to be received in December.

The large-scale Matthews Pinnacle Porphyry Copper-Gold target will be funded by a \$100,000 CEI Grant awarded from the Queensland State Government.

Ballymore Resources Limited ("Ballymore" or "the Company") is pleased to announce that drilling has commenced to test the Seventy Mile Mount and Matthews Pinnacle prospects, located 20km south of Charters Towers and 7km east-northeast of Mount Leyshon.

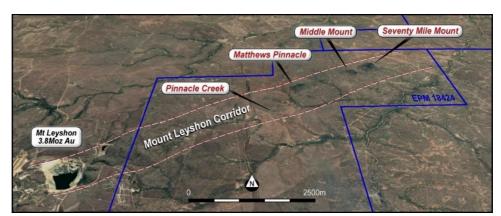
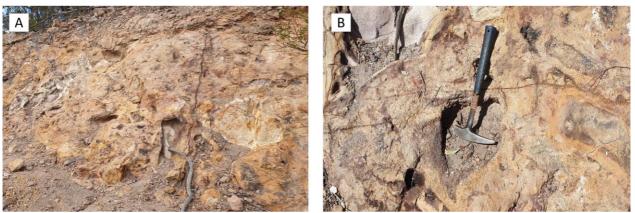
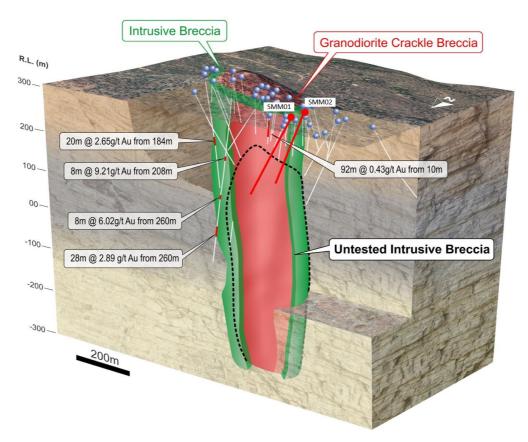



Figure 1. Mount Leyshon Corridor superimposed over EPM 18424.

These drilling targets represent significant hydrothermal breccia targets, similar in style to the Mount Leyshon (3.8 Moz Au) and Mount Wright (1.0 Moz Au) gold deposits. Initially, three holes will be completed to test the targets, for 1,400m of drilling. The program includes a hole to test the Matthews Pinnacle target, that has been awarded a CEI grant from the Queensland State Government.


Seventy Mile Mount Target

The Seventy Mile Mount prospect forms a prominent hill composed primarily of brecciated granodiorite. Mapping by Ballymore in 2020 recognised that a separate, highly milled polymictic breccia occurs on the northern margin of the breccia pipe. This breccia has many similarities with the breccia system at Mount Wright, located north of the township of Ravenswood, which Resolute Mining mined between 2006 and 2019 and produced 1.0Moz Au.

Figure 2. Examples of the strongly altered Seventy Mile Mount milled breccia and exhibiting clasts of granodiorite, volcanics, fine grained intrusives and chert.

Modelling of the breccia pipe has been completed and has demonstrated that the mapped intrusive breccia remains poorly tested by drilling. Only extremely limited drilling has tested this milled breccia zone below 100m depth and where intersected, this breccia zone is often mineralised. Historically only 18 holes have been drilled deeper than 100m and those that intersected the milled breccia zone showed promising results including 58m @ 1.54 g/t Au (PD90/06: 56 – 114m), including 4m @ 12.40 g/t Au and 28m @ 2.89 g/t Au (LSD002: 260 – 288m). It is noteworthy that Mount Wright hosted similar styles of milled breccias and only reported limited gold in the top 100m of the breccia pipe.

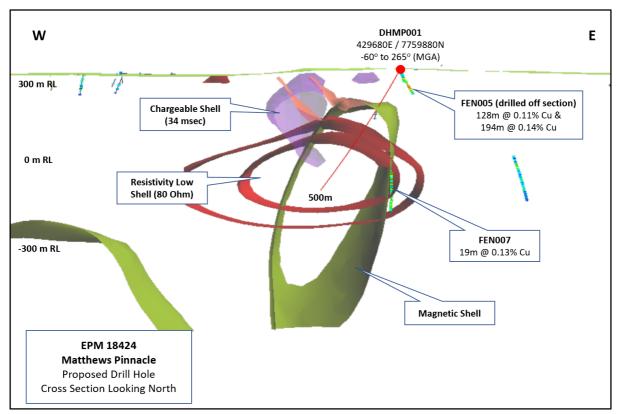
Figure 3. 3D geological model of the Seventy Mile Mount prospect, looking south, showing mapped geology (i.e. granodiorite crackle breccia (red) and altered polymictic milled breccia (green) and historic drill holes with gold assays, and proposed drill holes SMM01 – SMM02 (red).

Two holes have been planned to initially test this breccia target, based on the review of geological mapping, historic drilling and 3D modelling.

Table 1: Seventy Mile Mount Proposed Drill Holes

Hole	East	North	RL	Tdepth	Dip	Azi	Target
SMM01	431600	7761445	364	450	-60	120	Testing milled breccia beneath PD90/06
							(58m @ 1.54 g/t Au from 56m) and PSMR21 (48m @ 0.34g/t Au from 4m)
SMM02	431595	7761439	363	450	-60		Testing milled breccia beneath PSMR5
							(30m @ 0.32g/t Au from 10m) and PSM3
							(26m @ 0.60g/t Au from 10m & 48m @
							0.35g/t Au from 72m)

Matthews Pinnacle Target


Like the Seventy Mile Mount target, the Matthews Pinnacle target represents a large breccia system located within the Mount Leyshon Corridor some 7km east-northeast of Mount Leyshon. The Matthews Pinnacle target forms a large circular feature bounded by a rhyolite ring dyke. A large poly-metallic (copper-lead-zinc-molybdenum-gold) soil geochemical anomaly also coincides with the target. As part of the review of this target, historic IP-resistivity and magnetic data was re-processed and 3D modelled.

The Matthews Pinnacle drill hole is targeting a coincident pipelike magnetic anomaly and resistivity low with a surrounding chargeable anomaly. This target has remained untested by drilling, although several holes have been drilled adjacent to this target and reported broad, low-grade intersections including 106 m @ 0.23% Zn and 10 ppm Ag (LMD002: 177 – 283m), 128 m @ 0.11% Cu (98 – 226m) and 194 m @ 0.14% Cu (FEN005: 535 – 729m).

A proposal to test this target was prepared and submitted as part of the Geological Survey of Queensland's Collaborative Exploration Initiative (CEI) Round 5. Ballymore was successful in its application and was awarded A\$100,000 of CEI funding for the drilling of the Matthews Pinnacle target. A diamond drill hole is planned to test the Matthews Pinnacle and is planned to be 500m in length.

Table 2: Matthews Pinnacle Proposed Drill Hole

Hole	East	North	RL	Tdepth	Dip	Azi	Target
DHMP001	429680	7759880	324	500	-60	265	Testing a coincident pipelike magnetic
							anomaly and resistivity low with a
							surrounding chargeable anomaly beneath a
							large copper-lead-zinc-molybdenum-gold
							geochemical anomaly.

Figure 4. Cross section looking north at proposed Matthews Pinnacle drill hole, planned to test coincident magnetic (green) and resistivity low (red) anomalies.

About Ravenswood Project

The Ravenswood Project is situated in the Charters Towers Province in northeast Queensland, approximately 20 - 60km south of Charters Towers. The Project consists of EPMs 18424, 18637, 18426, 25466 and 25467, which comprise a total of 96 sub-blocks and encompass an area of 309km². On the 31st October 2019, Ballymore Resources Limited entered into a farm-in agreement and joint venture with ActivEX Limited for the Ravenswood Project with Ballymore Resources Limited earning-in to the tenements. In August 2021 Ballymore earned its initial 51% stake in the project. Under the agreement Ballymore Resources has the option to acquire the Project 100%.

Next Quarter Major Work Programme

- Complete Phase 1 Seventy Mile Mount drilling program at the Ravenswood Project
- Complete Matthews Pinnacle CEI drill program at the Ravenswood Project
- Complete technical review to progress next steps for Dittmer Mine
- Complete soil sampling and mapping programs at Ravenswood Project
- Complete soil sampling and mapping program at Golden Treasure, Dittmer Project

About Ballymore Resources

Ballymore Resources Limited is a minerals exploration company committed to the acquisition, identification, and delineation of new resource projects through active exploration. The Ballymore portfolio is focussed on copper and gold projects, with substantial tenement packages in north Queensland. Ballymore has three project areas at Dittmer, Ruddygore and Ravenswood. These consist of two granted Mining Leases (MLs), eleven granted Exploration Permits for Minerals (EPMs) and an EPM application covering an area of 1,355 km².

Approved by the Board of Ballymore Resources Limited.

For further information:

David A-Izzeddin

Technical Director daizzeddin@ballymoreres.com

Competent Persons Statement

The information in this announcement that relates to Exploration Results is based on information compiled or reviewed by Mr David A-Izzeddin. The Company is not aware of any new information or data that materially affects the information included in these Company Announcements and in the case of reported Mineral Resources, all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. Mr A-Izzeddin is a Member of The Australasian Institute of Geoscientists and is an employee of the Company. Mr A-Izzeddin has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr A-Izzeddin consents to the inclusion in the announcement of the matters based on his information in the form and context in which it applies. The Exploration Targets described in this announcement are conceptual in nature and there is insufficient information to establish whether further exploration will result in the determination of Mineral Resources.

Exploration Results & Exploration Target

Ballymore confirms that Exploration Results and Exploration Targets used in this document were estimated, reported and reviewed in accordance with the guidelines of the Australian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code) 2012 edition. Ballymore confirms that it is not aware of any new information or data that materially affects the Exploration Results or Exploration Target information included in the following announcements:

- *1 Ballymore Prospectus released on 1 September 2021
- *2 "Drilling commences as Ballymore Resources commences trading on ASX" released on 3 September 2021

Forward-Looking Statements

Certain statements made during or in connection with this statement contain or comprise certain forward-looking statements regarding the Company's Mineral Resources, exploration operations and other economic performance and financial conditions as well as general market outlook. Although the Company believes that the expectations reflected in such forward-looking statements are reasonable, such expectations are only predictions and are subject to inherent risks and uncertainties which could cause actual values, results, performance or achievements to differ materially from those expressed, implied or projected in any forward-looking statements and no assurance can be given that such expectations will prove to have been correct.

Accordingly, results could differ materially from those set out in the forward-looking statements as a result of, among other factors, changes in economic and market conditions, delays or changes in project development, success of business and operating initiatives, changes in the regulatory environment and other government actions, fluctuations in commodity prices and exchange rates and business and operational risk management. Except for statutory liability which cannot be excluded, each of the Company, its officers, employees and advisors expressly disclaim any responsibility for the accuracy or completeness of the material contained in this statement and excludes all liability whatsoever (including in negligence) for any loss or damage which may be suffered by any person as a consequence of any information in this statement or any error or omission. The Company undertakes no obligation to update publicly or release any revisions to these forward-looking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events other than required by the Corporations Act and ASX Listing Rules. Accordingly, you should not place undue reliance on any forward-looking statement.

APPENDIX 1. RAVENSWOOD – JORC CODE TABLE 1 CHECKLIST OF ASSESSMENT AND REPORTING CRITERIA

Section 1: Sampling Techniques and Data

CRITERIA	JORC Code Explanation	Commentary
SAMPLING TECHNIQUES	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as 	 Exploration has been undertaken at the Project since the early 1950s. Sampling methods have included surface rock chip and trenching, soil, and stream sediment samples, together with drillhole samples comprising open hole percussion, RC percussion, and diamond core samples.
	limiting the broad meaning of sampling.	 Geochemistry from soil and stream sediment samples is used semi-quantitatively to guide further exploration and is not used for Mineral Resource estimation.
		 The accuracy of rock chip geochemistry is generally high but these samples are spot samples and generally not used in Mineral Resource estimation.
		 The accuracy of trench and channel geochemistry is generally high. These samples are regularly used in Mineral Resource estimation.
		 The quality of open hole percussion drilling is generally low because there is a likelihood of contamination of samples. Consequently, these samples are generally used to guide further exploration and are not used for Mineral Resource estimation.
		 The quality of RC percussion drilling is generally medium – high because the method significantly reduces the potential of contamination, unless there is a lot of groundwater or badly broken ground. Consequently, these samples can be representative of the interval drilled and can be used for Mineral Resource estimation.
		 The quality of diamond coring is generally medium – high because the method is designed to sample the rock mass effectively in most conditions. Consequently, these samples can be representative of the interval drilled and can be used for Mineral Resource estimation.
		 Ballymore rock chip samples were collected from outcrop, subcrop, float material, as well as mullock samples.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 No information is available documenting measures to ensure sample representivity for surface sampling methods. These methods are not used for Mineral Resource estimation.
		 Trench and channel sampling is an established method designed to deliver a representative sample of the interval being sampled.
		RC drilling is an established method designed to minimise drilling-induced contamination of samples, aimed to deliver a representative sample of the interval being drilled. Diamond drilling is also an established method aimed at collecting representative samples of the interval being drilled.
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to 	 Economic gold mineralisation is measured in terms of parts per million and therefore rigorous sampling techniques must be adopted to ensure quantitative, precise measurements of gold concentration. If gold is present as medium – coarse grains, the entire sampling, sub-

CRITERIA	JORC Code Explanation	Commentary
	produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	sampling, and analytical process must be more stringent. Where the main mineralisation is copper, this is measured as a percentage and therefore sampling techniques can be somewhat less rigorous than for gold. • At Ravenswood, gold can be visible and therefore there are inherent sampling problems. Procedures used to manage this problem are documented elsewhere in relevant sub-sections of this table.
DRILLING TECHNIQUES	Drill type (e.g., core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit, or other type, whether core is oriented and if so, by what method, etc).	 Numerous drilling programs have been recorded across the Project area since the 1980s comprising mostly RC and diamond drilling. Ballymore has not completed any drilling to date at the Project. Most drilling is inconsistently documented and therefore details on hole sizes, bit types and other drilling parameters are sparse.
DRILL SAMPLE RECOVERY	Method of recording and assessing core and chip sample recoveries and results assessed.	For most programs, no information is available documenting if sample recovery was routinely recorded. Aberfoyle (1980s) reported sample recoveries of typically >85% in percussion drillholes. No assessment of sample recovery has been made.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	No information is available documenting measures to maximise sample recovery or ensure collection of representative samples.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 No assessment has been completed to determine if there is a relationship between sample recovery and grade, and whether there is any potential for sample bias associated with the drilling used to date.
LOGGING	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 Most drill logs document logging for lithology, structure, alteration, mineralisation, and veining. No core photography is available. Logging information is possibly adequate to support future Mineral Resource estimation but will be reassessed if required.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging of core is mostly qualitative.
	The total length and percentage of the relevant intersections logged.	Geological logs were completed for all drilled intervals.
SUB-SAMPLING TECHNIQUES AND SAMPLE PREPARATION	If core, whether cut or sawn and whether quarter, half or all core taken.	Different companies used different sampling intervals that ranged from a nominal minimum of 1 m to a nominal maximum of 4 m. Not all drilled intervals were sampled.
		 No information is available on whether the core was cut or split or the size of the core samples submitted for analysis.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 No information is available on moisture content of percussion samples. Limited information is reported for subsampling of percussion chips. Some companies report the use of cyclones at rigs and/or spearing of sample intervals to collect a sample for laboratory analysis.
	For all sample types, the nature, quality, and appropriateness of the sample preparation technique.	 Limited details of the laboratory preparation of samples were recorded. It is assumed that sample preparation methods used by all commercial laboratories followed the basic steps of drying, crushing, and pulverising, but details of the amount of the sample crushed and pulverised are not known. Therefore, it is not possible to assess the quality and

CRITERIA	JORC Code Explanation	Commentary	
		appropriateness of the sample pre techniques.	paration
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	 Limited information has been record documents quality control procedures for all sub-sampling stages to n representivity of samples. 	adopted
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	 No information has been record documents measures taken to ensure sampling is representative of the in situ collected. 	that the
	Whether sample sizes are appropriate to the grain size of the material being sampled.	 No formal assessment has been under quantify the appropriate sample size rec good quality determination of gold contex the nature of the gold mineralisation. 	uired for
QUALITY OF ASSAY DATA AND LABORATORY TESTS	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Limited detailed information has been that documents the nature, quali appropriateness of assaying methods any of the drilling programs. Where ganalysed, it was undertaken by aqua regand AAS finish, or more generally by fi method. Where other elements were a earlier programs tended to analyse for suite e.g., Cu, Pb, Zn, Ag. Some later pused a large multi-element suite anal ICP.	ty, and used for gold was ia digest re assay nalysed, a limited programs
		 Ballymore rock chip samples were and ALS Townsville using a multi-element aqua regia digestion and ICP-MS fini most elements, this is considered as analysis. Gold was analysed with a 50 used for fire assay with an I determination. Normally the gold analysis be considered a total analysis. 	suite by sh. For a total g charge CP-AES
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 In 2015 ActivEX completed a pXRF so over the King Solomon – Rose of A workings on EPM 18637. 1,117 acquired on north-south traverses space apart with a nominal reading interval 200 m. The survey was carried out using XL3t-950 handheld XRF analyser on 'So using three filters, each with 30 second to give a total analysing time of 90 second 	Allandale readings sed 50 m of 100 – g a Niton oil' mode, duration
		 Soil samples were prepared by scufficm2 area to remove any light vegeta immediate top soil. The instrument wased to analyse the area directly. The window was checked for any contaminant between samples. Niton a handhelds are able to detect 34 elen 'Soil' mode, using three filters, each second duration (Ag, As, Au, Ba, Ca, Cc, Cu, Fe, Hg, K, Mn, Mo, Ni, Pb, Pc, Sb, Sc, Se, Sn, Sr, Te, Th, Ti, U, V, V, Zr). 	ng a 10 tion and yas then analyser foreign (L3t-950 nents on with 30 I, Co, Cr, I, Rb, S,
	Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	 Limited details of the use of stand certified reference materials have reported. 	
VERIFICATION OF SAMPLING AND ASSAYING	The verification of significant intersections by either independent or alternative company personnel.	 It has not been possible to independen significant intersections. 	tly verify
	The use of twinned holes.	There has been no use of twinned holes	
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 Ballymore has collated and created database of previous exploration comp the Project. 	
	Discuss any adjustment to assay data.	 No adjustments to assay data have been 	n made.

CRITERIA	JORC Code Explanation	Commentary
LOCATION OF DATA POINTS	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 No details of the accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys) is recorded. Drillhole collar locations were typically based on local grids and the accuracy of drill collars has not been verified to date. Ballymore surface geochemical sampling is surveyed using a handheld GPS with a location error of +/- 5m.
	Specification of the grid system used.	The co-ordinate system used is MGA94 zone 55 Datum.
	Quality and adequacy of topographic control.	Quality of the topographic control data is poor and is currently reliant on public domain data.
DATA SPACING AND DISTRIBUTION	Data spacing for reporting of Exploration Results.	 There is a relatively small amount of drilling to date at Seventy Mile Mount, Matthews Pinnacle, Puddler Creek, Day Dawn, Radical, Cockfields, Lighthorse, Just In Time, Westgate, Matthews South, Rishton Sands and Red Dust prospects. The spacing of drillhole data is variable.
	Whether the data spacing and distribution is sufficient to establish the degree of geological	There are no Mineral Resources or Ore Reserves.
	and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 There is insufficient drill spacing to establish the degree of geological and grade continuity appropriate for Mineral Resource and Ore Reserve estimation.
	Whether sample compositing has been applied.	 Some sample compositing was carried out on site within some of the percussion drilling e.g., Aurora Gold (1993) composited the 1 m RC drillhole samples into 4 m composites for initial analysis, and Rishton Gold (1996) composited the 1 m RC drillhole samples into 3 m composites.
		 For reporting purposes, some drillhole assay results have been composited together to report contiguous zones of mineralisation.
ORIENTATION OF DATA IN RELATION TO GEOLOGICAL STRUCTURE	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 Previous drillholes were generally sited to intersect interpreted mineralised zones at a high angle, however, only limited drilling has been completed to date and further drilling will be required to establish the optimal orientation.
		 To the extent known, drilling is assumed to be unbiased.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias is considered to have been introduced in drilling completed.
SAMPLE SECURITY	The measures taken to ensure sample security.	 No chain of custody is documented for previous drilling. For Ballymore sampling programs, all work was supervised by company staff. Samples were double bagged, palletised and shrink wrapped at the core shed before dispatch to the laboratory.
AUDITS OR REVIEWS	The results of any audits or reviews of sampling techniques and data.	 Ballymore programs: Internal auditing procedures and reviews were regularly undertaken on sampling techniques, standard operating procedures, and laboratory processes. Derisk has completed a review of the work Ballymore has undertaken.

Section 2: Reporting of Exploration Results

CRITERIA	JORC Code explanation	Commentary
MINERAL TENEMENT AND LAND TENURE STATUS	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Project tenements comprise EPM 18424, EPM 18426, EPM 18637, EPM 25466, and EPM 25467. These licences are currently held 51% Ballymore Resources / 49% ActivEX Ltd.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All tenements are in good standing.
EXPLORATION DONE BY OTHER PARTIES	Acknowledgment and appraisal of exploration by other parties. Output Description Descrip	 Numerous exploration permits and mining leases have been held over parts and/or all of the Project area. Previous exploration has included geological mapping, soil and rock chip geochemical sampling, airborne and ground geophysics, plus RC and diamond drilling. Major programs included: Aberfoyle Exploration (1983 – 1985) completed an IP survey, VLF EM survey, horizontal loop EM, geological mapping, soil sampling, petrology, ground magnetic survey, panned concentrate samples, percussion drilling around Seventy Mile Mount and Middle Mount (5 holes for 586 m). Pajingo Gold Mine/Battle Mountain (Australia) Inc (1985 – 1988) completed reconnaissance and detailed mapping, prospecting, costeaning, rock chip sampling, drilling at Cockfields and Seventy Mile Creek (19 holes for 449.5 m). Aurora Gold Limited/North Queensland Resources/Newmont Holdings /BHP Minerals (1981 – 1994) completed work including photogeological interpretation, rock chip sampling, stream sediment sampling, soil sampling, geological mapping, percussion drilling (9 holes for 394 m), magnetic susceptibility traverses, metallurgical testwork, engineering studies, resource estimates, ore reserves. Key prospects explored within the Ravenswood project included Day Dawn, Radical, Cornishman and Alfonso. Pan Australian Mining (1982 – 1992) completed airborne magnetics/radiometrics, geological mapping, aerial photography, BCL stream sediment sampling, ground magnetics, trenching and percussion drilling at Lighthorse and Just In Time (11 holes for 321.5 m). Esso Australia (1983 – 1985) completed stream sediment data, petrology, trenching at Matthew Pinnacle, Matthews South and Westgate (30 trenches for 1,164 m), RC drilling at Westgate, Puddler Creek, Pinnacle Creek, and Matthews Pinnacle (13 holes for 682 m) and diamond drilling at Westgate and Pinnacle Creek (4 holes for 239 m). Mount Leyshon Gold Mines (1991 – 2009) completed geological mapping, rock chip sampling,

CRITERIA	JORC Code explanation	Commentary
		bedrock drilling at Rishton Sands (57 holes for 1,140 m). O Union Oil Development Corporation (1988 – 1989) reviewed multispectral data, completed reconnaissance and grid mapping at Mt Cornishman, rock chip sampling, stream sediment sampling, acquisition of aeromagnetic and radiometric data, RC drilling at Red Dust (15 holes for 630 m).
GEOLOGY	Deposit type, geological setting, and style of mineralisation.	 The Ravenswood Project is located within the Ravenswood Batholith in the Mount Windsor Subprovince of the Charters Towers Province, within the Thomson Orogen, part of the northern Tasman Fold Belt System. Ballymore considers that the Project is prospective for: Devonian intrusive-hosted mesothermal gold veins e.g., Charters Towers Goldfield. Carboniferous intrusive-hosted mesothermal gold veins e.g., Ravenswood Goldfield. Early Permian breccia-hosted gold systems e.g., Mount Leyshon, Mount Wright, Welcome Breccia. Late Palaeozoic low sulphidation epithermal gold veins e.g., Pajingo group. Cambrian polymetallic volcanic-hosted massive sulphides e.g., Mount Windsor deposits.
DRILL HOLE INFORMATION	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar. Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar. Dip and azimuth of the hole. Down hole length and interception depth. Hole length. If the exclusion of this information is justified.	Refer to Appendix 2. Refer to Appendix 2.
	on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	• Relei to Appendix 2.
DATA AGGREGATION METHODS	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.	 The mineralised drill intersections are reported as downhole intervals and were not converted to true widths. Where gold repeats were recorded, the average of all the samples was used. True widths may be up to 50% less than drill intersections pending confirmation of mineralisation geometry. No capping of high grades was performed in the aggregation process.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	 The drill intercepts reported were calculated using a 0.5 g/t Au cut-off grade. Gold grade for the intercept was calculated as a weighted average grade. Up to 2 m (down hole) of internal waste (< 0.5 g/t Au) was included in some cases.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are reported.
RELATIONSHIP BETWEEN MINERALISATIO	These relationships are particularly important in the reporting of Exploration Results.	Overall, previous drilling orientation and sampling was generally as perpendicular to the mineralisation targets as practicable.
N WIDTHS AND INTERCEPT LENGTHS	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	The geometry of the various drill targets has generally been established through mapping and most mineralisation is typically hosted in sub-

CRITERIA	JORC Code explanation	Commentary
		vertical veining and breccia bodies. Nevertheless, further work is required to establish the optimal angle to test the mineralisation.
	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	The mineralised intercepts generally intersect the interpreted dip of the mineralisation at a high angle but are not true widths.
DIAGRAMS	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures contained within this report.
BALANCED REPORTING	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Balanced reporting of Exploration Results is presented within this report.
OTHER SUBSTANTIVE EXPLORATION DATA	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and	 The Project includes a large amount of exploration data collected by previous companies, including regional stream sediment geochemical data, soil sample and rock chip data, geological mapping data, drilling data, geophysical survey data, and costean data. Much of this data has been captured and validated into a GIS database.
	rock characteristics; potential deleterious or contaminating substances.	 Previous mining has been limited and involved very selective mining and hand sorting. Limited systematic data has been collected to date to assess metallurgy and mining parameters relevant to a modern operation.
FURTHER WORK	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Ballymore plans to conduct surface geological mapping and geochemistry, and drilling across various high-priority target areas over the next two years.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Refer to figures contained within this report.

APPENDIX 2. RAVENSWOOD DRILLING

Company	Target	HoleID	Hole Type	East (MGA)	North (MGA)	RL	Depth (m)	Dip (°)	Azimuth (° Mag)	Licence	Year
Aberfoyle	Seventy Mile	PSM1	Percussion	431,427	7,761,333	323	80	-60	132	3466	1984
Exploration Aberfoyle Exploration	Mount Seventy Mile Mount	PSM2	Percussion	431,521	7,761,216	327	76	-60	132	3466	1984
Aberfoyle Exploration	Seventy Mile Mount	PSM3	Percussion	431,485	7,761,265	319	136	-60	130	3466	1984
Aberfoyle Exploration	Seventy Mile Mount	PSM4	Percussion	431,611	7,761,311	359	136	-60	170	3466	1984
Aberfoyle Exploration	Seventy Mile Mount	PSM5	Percussion	431,633	7,761,029	313	158	-60	120	3466	1984
Aurora Gold	Cornishman Prospect	CM001	Reverse Circulation	441,980	7,773,031	245	66	-60	340	9471	1993
Aurora Gold	Day Dawn Workings	DDRC001	Reverse Circulation	446,896	7,772,831	235	48	-60	55	4333	1993
Aurora Gold	Day Dawn - Boatswains	DDRC002	Reverse Circulation	447,057	7,772,747	230	40	-60	30	4333	1993
Aurora Gold	Day Dawn Workings	DDRC003	Reverse Circulation	446,804	7,772,970	241	43	-60	60	4333	1993
Aurora Gold	Day Dawn Workings	DDRC004	Reverse Circulation	446,774	7,773,026	241	50	-60	60	4333	1993
Aurora Gold	Radical	RARC001	Reverse Circulation	443,990	7,771,422	259	33	-60	0	5960	1993
Aurora Gold	Radical	RARC002	Reverse Circulation	444,072	7,771,411	260	27	-60	0	5960	1993
Aurora Gold	Radical	RARC003	Reverse Circulation	444,100	7,771,405	261	33	-60	0	5960	1993
Aurora Gold	Radical	RARC004	Reverse Circulation	444,102	7,771,425	261	54	-60	0	5960	1993
Mount Leyshon Gold Mines	Puddler Creek	MMRC00 1	Reverse Circulation	431,038	7,761,113	340	336	-60	155	4229	1999
Pajingo Gold Mine	Cockfields	CR0001	Reverse Circulation	440,066	7,769,448	273	20	-60	225	4015	1985
Pajingo Gold Mine	Cockfields	CR0002	Reverse Circulation	440,060	7,769,437	272	19	-60	225	4015	1985
Pajingo Gold Mine	Cockfields	CR0003	Reverse Circulation	440,024	7,769,462	272	32	-60	225	4015	1985
Pajingo Gold Mine	Cockfields	CR0004	Reverse Circulation	440,123	7,769,394	272	20	-60	225	4015	1985
Pajingo Gold Mine	Cockfields	CR0005	Reverse Circulation	440,146	7,769,363	272	20	-60	225	4015	1985
Pajingo Gold Mine	Cockfields	CR0006	Reverse Circulation	439,973	7,769,720	279	27	-60	225	4015	1985
Pajingo Gold Mine	Cockfields	CR0007	Reverse Circulation	439,714	7,770,751	264	32	-60	265	4015	1985
Pajingo Gold Mine	Cockfields	CR0008	Reverse Circulation	439,711	7,770,684	266	22	-60	277	4015	1985
Pajingo Gold Mine	Cockfields	CR0009	Reverse Circulation	439,711	7,770,615	268	21.5	-60	97	4015	1985

Company	Target	HoleID	Hole Type	East (MGA)	North (MGA)	RL	Depth (m)	Dip (°)	Azimuth (° Mag)	Licence	Year
Pajingo Gold Mine	Cockfields	CR0010	Reverse Circulation	439,750	7,770,466	274	33	-60	277	4015	1985
Pajingo Gold Mine	Cockfields	CR0011	Reverse Circulation	439,780	7,770,468	273	20	-60	97	4015	1985
Pajingo Gold Mine	Cockfields	CR0012	Reverse Circulation	439,524	7,770,307	272	33	-60	45	4015	1985
Pajingo Gold Mine	Cockfields	CR0013	Reverse Circulation	442,231	7,766,625	278	9	-60	359	4015	1985
Pajingo Gold Mine	Cockfields	CR0014	Reverse Circulation	442,230	7,766,635	279	9	-60	359	4015	1985
Battle Mountain (Australia) Inc	Seventy Mile Creek	CR0031	Reverse Circulation	435,688	7,768,511	280	30	-60	165	4015	1987
Battle Mountain (Australia)	Seventy Mile Creek	CR0033	Reverse Circulation	435,800	7,768,704	273	28	-60	165	4015	1987
Battle Mountain (Australia)	Seventy Mile Creek	CR0034	Reverse Circulation	435,761	7,768,704	275	24	-60	165	4015	1987
Battle Mountain (Australia)	Seventy Mile Creek	SM1	Trench	435,897	7,768,568	276	25	0	350	4015	1987
Battle Mountain (Australia)	Seventy Mile Creek	SM2	Trench	435,736	7,768,588	275	25	0	350	4015	1987
Mount Leyshon Gold Mines	Puddler Creek	GS1	Reverse Circulation	425,443	7,755,772	366	84	-45	119	10144	1991
Mount Leyshon Gold Mines	Puddler Creek	GS2	Reverse Circulation	425,440	7,755,746	366	74.9	-52	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GS3	Reverse Circulation	425,429	7,755,742	372	86.6	-55	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GS4	Reverse Circulation	425,332	7,755,826	385	179.3	-75	126	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP10	Reverse Circulation	425,455	7,755,706	372	38	-57	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP11	Reverse Circulation	425,420	7,755,737	372	106	-54	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP12	Reverse Circulation	425,468	7,755,722	361	35	-52	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP13	Reverse Circulation	425,450	7,755,738	367	70	-51	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP14	Reverse Circulation	425,431	7,755,755	371	105	-51	126	10144	1993

Company	Target	HoleID	Hole Type	East (MGA)	North (MGA)	RL	Depth (m)	Dip (°)	Azimuth (° Mag)	Licence	Year
Mount Leyshon Gold Mines	Puddler Creek	GSP15	Reverse Circulation	425,476	7,755,810	357	100	-59	124	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP16	Reverse Circulation	425,492	7,755,795	353	75	-59	124	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP17	Reverse Circulation	425,508	7,755,781	353	50	-60	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP18	Reverse Circulation	425,496	7,755,759	354	40	-51	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP19	Reverse Circulation	425,478	7,755,775	358	70	-51	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP2	Reverse Circulation	425,505	7,755,821	351	80	-60	129	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP20	Reverse Circulation	425,459	7,755,791	365	110	-51	124	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP21	Reverse Circulation	425,486	7,755,833	357	100	-61	123	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP22	Reverse Circulation	425,470	7,755,749	360	50	-48	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP23	Reverse Circulation	425,434	7,755,779	365	100	-53	123	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP24	Reverse Circulation	425,459	7,755,730	367	55	-51	124	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP25	Reverse Circulation	425,442	7,755,690	372	34	-51	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP26	Reverse Circulation	425,422	7,755,709	376	70	-51	124	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP27	Reverse Circulation	425,523	7,755,832	347	50	-49	124	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP28	Reverse Circulation	425,504	7,755,849	349	85	-49	123	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP29	Reverse Circulation	425,657	7,755,782	344	60	-44	266	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP3	Reverse Circulation	425,478	7,755,788	358	80	-60	129	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP30	Reverse Circulation	425,635	7,755,757	343	60	-43	265	10144	1993

Company	Target	HoleID	Hole Type	East (MGA)	North (MGA)	RL	Depth (m)	Dip (°)	Azimuth (° Mag)	Licence	Year
Mount Leyshon Gold Mines	Puddler Creek	GSP31	Reverse Circulation	425,432	7,755,699	376	50	-51	126	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP32	Reverse Circulation	425,413	7,755,718	372	80	-51	126	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP33	Reverse Circulation	425,430	7,755,675	381	35	-54	124	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP34	Reverse Circulation	425,412	7,755,691	376	70	-54	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP35	Reverse Circulation	425,418	7,755,660	381	35	-54	124	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP36	Reverse Circulation	425,409	7,755,668	381	50	-54	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP37	Reverse Circulation	425,447	7,755,713	367	50	-54	128	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP38	Reverse Circulation	425,429	7,755,728	372	80	-56	126	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP39	Reverse Circulation	425,445	7,755,701	372	45	-54	127	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP4	Reverse Circulation	425,438	7,755,721	367	80	-60	129	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP40	Reverse Circulation	425,435	7,755,710	372	60	-54	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP41	Reverse Circulation	425,426	7,755,718	372	75	-55	126	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP42	Reverse Circulation	425,457	7,755,717	367	45	-55	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP43	Reverse Circulation	425,448	7,755,726	367	60	-54	124	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP44	Reverse Circulation	425,438	7,755,734	367	75	-55	128	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP45	Reverse Circulation	425,470	7,755,734	361	45	-55	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP46	Reverse Circulation	425,460	7,755,743	367	60	-54	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP47	Reverse Circulation	425,450	7,755,751	366	75	-55	125	10144	1993

Company	Target	HoleID	Hole Type	East (MGA)	North (MGA)	RL	Depth (m)	Dip (°)	Azimuth (° Mag)	Licence	Year
Mount Leyshon Gold Mines	Puddler Creek	GSP48	Reverse Circulation	425,500	7,755,788	353	60	-59	127	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP49	Reverse Circulation	425,484	7,755,802	358	80	-59	124	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP5	Reverse Circulation	425,485	7,755,905	349	52	-55	89	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP50	Reverse Circulation	425,497	7,755,774	354	50	-59	128	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP51	Reverse Circulation	425,489	7,755,781	358	70	-59	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP52	Reverse Circulation	425,433	7,755,686	376	45	-54	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP53	Reverse Circulation	425,424	7,755,694	376	60	-54	126	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP54	Reverse Circulation	425,414	7,755,703	376	75	-54	127	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP55	Reverse Circulation	425,408	7,755,734	372	80	-55	129	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP56	Reverse Circulation	425,476	7,755,672	365	55	-79	305	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP57	Reverse Circulation	425,432	7,755,767	371	100	-54	127	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP58	Reverse Circulation	425,401	7,755,752	378	80	-55	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP59	Reverse Circulation	425,411	7,755,771	371	120	-51	126	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP6	Reverse Circulation	425,509	7,755,903	347	66	-55	87	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP60	Reverse Circulation	425,377	7,755,772	378	140	-75	125	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP61	Reverse Circulation	425,398	7,755,796	379	80	-51	128	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP62	Reverse Circulation	425,490	7,755,688	363	55	-79	305	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP63	Reverse Circulation	425,424	7,755,774	371	75	-65	125	10144	1994

Company	Target	HoleID	Hole Type	East (MGA)	North (MGA)	RL	Depth (m)	Dip (°)	Azimuth (° Mag)	Licence	Year
Mount Leyshon Gold Mines	Puddler Creek	GSP64	Reverse Circulation	425,395	7,755,798	379	95	-64	126	10144	1994
Mount Leyshon Gold Mines	Puddler Creek	GSP65	Reverse Circulation	425,420	7,755,792	373	80	-65	125	10144	1994
Mount Leyshon Gold Mines	Puddler Creek	GSP66	Reverse Circulation	425,402	7,755,766	378	85	-64	124	10144	1994
Mount Leyshon Gold Mines	Puddler Creek	GSP67	Reverse Circulation	425,526	7,755,802	349	28	-67	125	10144	1994
Mount Leyshon Gold Mines	Puddler Creek	GSP68	Reverse Circulation	425,507	7,755,799	353	35	-65	125	10144	1994
Mount Leyshon Gold Mines	Puddler Creek	GSP69	Reverse Circulation	425,523	7,755,819	347	35	-64	126	10144	1994
Mount Leyshon Gold Mines	Puddler Creek	GSP7	Reverse Circulation	425,518	7,755,809	351	33	-60	120	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP70	Reverse Circulation	425,437	7,755,810	364	80	-64	123	10144	1994
Mount Leyshon Gold Mines	Puddler Creek	GSP71	Reverse Circulation	425,413	7,755,814	372	90	-64	124	10144	1994
Mount Leyshon Gold Mines	Puddler Creek	GSP72	Reverse Circulation	425,389	7,755,820	378	100	-61	125	10144	1994
Mount Leyshon Gold Mines	Puddler Creek	GSP73	Reverse Circulation	425,381	7,755,747	378	75	-64	123	10144	1994
Mount Leyshon Gold Mines	Puddler Creek	GSP74	Reverse Circulation	425,466	7,755,769	360	55	-62	124	10144	1994
Mount Leyshon Gold Mines	Puddler Creek	GSP75	Reverse Circulation	425,376	7,755,831	378	90	-60	124	10144	1994
Mount Leyshon Gold Mines	Puddler Creek	GSP76	Reverse Circulation	425,402	7,755,809	378	95	-62	124	10144	1994
Mount Leyshon Gold Mines	Puddler Creek	GSP77	Reverse Circulation	425,376	7,755,802	379	100	-64	123	10144	1994
Mount Leyshon Gold Mines	Puddler Creek	GSP8	Reverse Circulation	425,563	7,755,842	345	51	-60	122	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	GSP9	Reverse Circulation	425,540	7,755,861	346	90	-60	122	10144	1993
Mount Leyshon Gold Mines	Puddler Creek	LXR011	Reverse Circulation	425,728	7,754,875	344	100	-60	45	10144	1999

Company	Target	HoleID	Hole Type	East (MGA)	North (MGA)	RL	Depth (m)	Dip (°)	Azimuth (° Mag)	Licence	Year
Mount Leyshon Gold Mines	Puddler Creek	MLRC102 1	Reverse Circulation	425,377	7,756,015	373	204	-60	172	10144	1999
Mount Leyshon Gold Mines	Puddler Creek	MLRC102 2	Reverse Circulation	425,341	7,755,822	385	124	-60	315	10144	1999
Mount Leyshon Gold Mines	Puddler Creek	MLRC102 3	Reverse Circulation	425,344	7,755,819	385	234	-55	262	10144	1999
Mount Leyshon Gold Mines	Puddler Creek	MLRC104 4	Reverse Circulation	425,530	7,755,770	348	120	-60	115	10144	1999
Mount Leyshon Gold Mines	Puddler Creek	MLRC980	Reverse Circulation	425,341	7,755,768	393	426	-53	245	10144	1999
Pan Australian Mining	Lighthorse	LHP001	Percussion	432,972	7,759,398	291	33	-60	170	4229	1988
Pan Australian Mining	Lighthorse	LHP002	Percussion	432,905	7,759,372	288	33	-60	190	4229	1988
Pan Australian Mining	Lighthorse	LHP003	Percussion	432,907	7,759,390	288	57	-60	190	4229	1988
City Resources	Matthews Pinnacle	MP125	Reverse Circulation	429,517	7,760,394	336	96	-60	170	4229	1987
City Resources	Matthews Pinnacle	MP126	Reverse Circulation	429,518	7,760,344	344	84	-60	170	4229	1987
City Resources	Pinnacle Creek	MP127	Diamond	428,377	7,760,029	317	99	-60	210	4229	1987
City Resources	Pinnacle Creek	MP128	Diamond	428,336	7,760,023	318	79.5	-60	210	4229	1987
City Resources	Pinnacle Creek	MP129	Reverse Circulation	428,326	7,760,069	319	108	-60	210	4229	1987
City Resources	Seventy Mile Mount	SM001	Reverse Circulation	431,412	7,761,377	320	130	-60	130	4229	1987
City Resources	Seventy Mile Mount	SM002	Diamond	431,419	7,761,333	323	81	-60	130	4229	1987
Esso Australia	Westgate	MP001	Diamond	429,909	7,757,829	290	93	-60	90	4229	1986
Esso Australia	Pinnacle Creek	MP002	Diamond	428,337	7,759,984	320	54.2	-60	210	4229	1986
Esso Australia	Pinnacle Creek	MP003	Diamond	428,424	7,759,919	320	29.3	-60	210	4229	1986
Esso Australia	Pinnacle Creek	MP004	Diamond	428,440	7,759,945	319	62.5	-60	210	4229	1986
Esso Australia	Westgate	MP111	Reverse Circulation	429,933	7,757,835	289	42	-60	90	4229	1986
Esso Australia	Westgate	MP112	Reverse Circulation	429,939	7,757,810	289	42	-60	90	4229	1986
Esso Australia	Puddler Creek	MP113	Reverse Circulation	429,129	7,758,774	313	48	-60	70	4229	1986

Company	Target	HoleID	Hole Type	East (MGA)	North (MGA)	RL	Depth (m)	Dip (°)	Azimuth (° Mag)	Licence	Year
Esso Australia	Puddler Creek	MP114	Reverse Circulation	429,018	7,758,936	308	60	-60	25	4229	1986
Esso Australia	Pinnacle Creek	MP115	Reverse Circulation	428,356	7,759,954	322	30	-60	210	4229	1986
Esso Australia	Pinnacle Creek	MP116	Reverse Circulation	428,357	7,759,969	320	60	-60	210	4229	1986
Esso Australia	Pinnacle Creek	MP118	Reverse Circulation	428,448	7,759,894	322	42	-60	210	4229	1986
Esso Australia	Pinnacle Creek	MP119	Reverse Circulation	428,599	7,759,812	320	42	-60	230	4229	1986
Esso Australia	Matthews Pinnacle	MP120	Reverse Circulation	429,517	7,760,284	364	80	-60	170	4229	1986
Esso Australia	Matthews Pinnacle	MP121	Reverse Circulation	429,483	7,760,543	320	80	-60	90	4229	1986
Esso Australia	Matthews Pinnacle	MP122	Reverse Circulation	429,466	7,760,773	316	60	-60	130	4229	1986
Esso Australia	Matthews Pinnacle	MP123	Reverse Circulation	429,445	7,760,845	318	54	-60	75	4229	1986
Esso Australia	Matthews Pinnacle	MP124	Reverse Circulation	429,676	7,760,785	315	42	-60	55	4229	1986
Mount Leyshon Gold Mines	Matthews Pinnacle	LMD001	Reverse Circulation	429,509	7,759,975	331	262.05	-51	188	4229	1998
Mount Leyshon Gold Mines	Matthews Pinnacle	LMD002	Reverse Circulation	429,506	7,759,973	331	349	-50	263	4229	1998
Mount Leyshon Gold Mines	Puddler Creek	LMR001	Reverse Circulation	429,104	7,758,864	309	108	-58	11	4229	1998
Mount Leyshon Gold Mines	Puddler Creek	LMR002	Reverse Circulation	429,197	7,758,924	309	153	-64	14	4229	1998
Mount Leyshon Gold Mines	Puddler Creek	LMR003	Reverse Circulation	429,564	7,758,921	305	153	-63	5	4229	1998
Mount Leyshon Gold Mines	Puddler Creek	LMR004	Reverse Circulation	429,636	7,758,653	313	153	-64	1	4229	1998
Mount Leyshon Gold Mines	Puddler Creek	LMR005	Reverse Circulation	428,389	7,758,375	305	153	-60	180	4229	1998
Mount Leyshon Gold Mines	Puddler Creek	LMR006	Reverse Circulation	428,379	7,758,331	302	140	-60	180	4229	1998
Mount Leyshon Gold Mines	Puddler Creek	LMR007	Reverse Circulation	428,437	7,758,151	305	153.05	-79	182	4229	1998
Mount Leyshon Gold Mines	Puddler Creek	LMR008	Reverse Circulation	428,434	7,758,102	306	150	-61	173	4229	1998
Mount Leyshon Gold Mines	Puddler Creek	LMR009	Reverse Circulation	428,706	7,758,229	312	153.3	-61	85	4229	1998

Company	Target	HoleID	Hole Type	East (MGA)	North (MGA)	RL	Depth (m)	Dip (°)	Azimuth (° Mag)	Licence	Year
Mount Leyshon Gold Mines	Puddler Creek	LMR010	Reverse Circulation	428,800	7,757,508	298	81	-90	0	4229	1998
Mount Leyshon Gold Mines	Puddler Creek	LMR011	Reverse Circulation	429,383	7,758,949	303	150	-60	0	4229	1998
Mount Leyshon Gold Mines	Matthews Pinnacle	LMR013	Reverse Circulation	429,601	7,760,242	372	225	-50	180	4229	2000
Mount Leyshon Gold Mines	Matthews Pinnacle	LMR014	Reverse Circulation	429,600	7,759,847	321	370	-45	352	4229	2000
Mount Leyshon Gold Mines	Matthews Pinnacle	LMR015	Reverse Circulation	429,597	7,759,968	329	272	-45	352	4229	2000
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA001	Reverse Circulation	432,150	7,761,438	315	39	-60	75	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA002	Reverse Circulation	431,500	7,760,358	292	72	-60	200	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA003	Reverse Circulation	431,440	7,760,278	292	67	-60	140	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA004	Reverse Circulation	431,320	7,759,988	292	81	-60	90	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA005	Reverse Circulation	431,240	7,759,768	293	54	-60	180	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA006	Reverse Circulation	431,360	7,760,088	288	37	-60	90	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA007	Reverse Circulation	431,410	7,760,163	288	12	-90	0	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA008	Reverse Circulation	431,280	7,759,898	297	9	-60	180	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA009	Reverse Circulation	431,300	7,761,333	314	55	-60	180	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA010	Reverse Circulation	431,300	7,761,408	316	63	-60	180	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA011	Reverse Circulation	431,300	7,761,508	323	61	-60	360	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA012	Reverse Circulation	431,300	7,761,483	321	61	-60	360	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA013	Reverse Circulation	431,400	7,761,418	321	73	-60	90	4229	1998

Company	Target	HoleID	Hole Type	East (MGA)	North (MGA)	RL	Depth (m)	Dip (°)	Azimuth (° Mag)	Licence	Year
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA014	Reverse Circulation	431,500	7,761,533	334	52	-60	180	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA015	Reverse Circulation	431,500	7,761,508	334	55	-60	180	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA016	Reverse Circulation	430,850	7,761,273	322	61	-60	360	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA017	Reverse Circulation	430,800	7,761,298	320	49	-60	360	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA018	Reverse Circulation	430,750	7,761,273	317	49	-60	360	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LRA019	Reverse Circulation	430,300	7,761,328	323	61	-60	90	4229	1998
Mount Leyshon Gold Mines	Matthews Pinnacle	LRA020	Reverse Circulation	430,300	7,760,358	303	61	-60	262	4229	1998
Mount Leyshon Gold Mines	Matthews Pinnacle	LRA021	Reverse Circulation	428,930	7,761,008	324	37	-60	225	4229	1998
Mount Leyshon Gold Mines	Matthews Pinnacle	LRA022	Reverse Circulation	428,860	7,760,908	325	67	-90	0	4229	1998
Mount Leyshon Gold Mines	Matthews Pinnacle	LRA023	Reverse Circulation	428,790	7,760,843	327	49	-60	45	4229	1998
Mount Leyshon Gold Mines	Matthews Pinnacle	LRA024	Reverse Circulation	428,730	7,760,768	327	52	-60	45	4229	1998
Mount Leyshon Gold Mines	Matthews Pinnacle	LRA025	Reverse Circulation	428,650	7,760,728	324	57	-60	20	4229	1998
Mount Leyshon Gold Mines	Matthews Pinnacle	LRA026	Reverse Circulation	429,200	7,760,258	324	60	-60	90	4229	1998
Mount Leyshon Gold Mines	Matthews Pinnacle	LRA027	Reverse Circulation	429,400	7,760,258	353	70	-60	90	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LSD001	Reverse Circulation	431,697	7,761,332	392	340.17	-70	174	4229	1998
Mount Leyshon Gold Mines	Seventy Mile Mount	LSD002	Reverse Circulation	431,633	7,761,242	353	496	-80	59	4229	1999
Mount Leyshon Gold Mines	Seventy Mile Mount	LSR001	Reverse Circulation	431,347	7,761,042	323	284	-60	82	4229	1999
Mount Leyshon Gold Mines	Seventy Mile Mount	LSR002	Reverse Circulation	431,635	7,761,235	345	172	-60	142	4229	1999

Company	Target	HoleID	Hole Type	East (MGA)	North (MGA)	RL	Depth (m)	Dip (°)	Azimuth (° Mag)	Licence	Year
Mount Leyshon Gold Mines	Seventy Mile Mount	LSR003	Reverse Circulation	431,347	7,761,100	318	486.4	-51	52	4229	1999
Mount Leyshon Gold Mines	Puddler Creek	LXR013	Reverse Circulation	425,422	7,752,923	324	102	-60	262	4229	1999
Mount Leyshon Gold Mines	Puddler Creek	LXR016	Reverse Circulation	427,188	7,759,031	321	51	-55	47	4229	2000
Mount Leyshon Gold Mines	Puddler Creek	LXR017	Reverse Circulation	427,331	7,759,205	324	90	-55	47	4229	2000
Mount Leyshon Gold Mines	Puddler Creek	LXR018	Reverse Circulation	427,370	7,759,238	324	90	-55	47	4229	2000
Mount Leyshon Gold Mines	Puddler Creek	LXR019	Reverse Circulation	427,098	7,759,242	324	90	-55	47	4229	2000
Mount Leyshon Gold Mines	Puddler Creek	LXR020	Reverse Circulation	427,196	7,759,328	321	90	-55	47	4229	2000
Mount Leyshon Gold Mines	Puddler Creek	LXR021	Reverse Circulation	427,235	7,759,354	323	90	-55	47	4229	2000
Mount Leyshon Gold Mines	Puddler Creek	LXR022	Reverse Circulation	427,270	7,759,383	326	90	-55	47	4229	2000
Mount Leyshon Gold Mines	Puddler Creek	LXR023	Reverse Circulation	427,184	7,758,748	315	50	-55	47	4229	2000
Mount Leyshon Gold Mines	Seventy Mile Mount	MMRC00 1	Reverse Circulation	431,038	7,761,113	340	336	-50	172	4229	1999
Pan Australian Mining	Puddler Creek	PDP001	Percussion	431,944	7,760,112	291	39	-60	137	4229	1988
Pan Australian Mining	Puddler Creek	PDP002	Percussion	431,964	7,760,104	292	39	-60	183	4229	1988
Pan Australian Mining	Puddler Creek	PDP003	Percussion	431,964	7,760,113	291	60	-60	290	4229	1988
Pan Australian Mining	Puddler Creek	PDP004	Percussion	431,940	7,760,122	291	51	-60	140	4229	1988
Rishton (Gold)	Rishton Sands	RSA039	Bedrock	445,400	7,771,008	255	12	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA040	Bedrock	445,300	7,771,008	257	21	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA041	Bedrock	445,200	7,771,008	259	19	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA042	Bedrock	445,100	7,771,008	264	24	-90	350	10585	1996

Company	Target	HoleID	Hole Type	East (MGA)	North (MGA)	RL	Depth (m)	Dip (°)	Azimuth (° Mag)	Licence	Year
Rishton (Gold)	Rishton Sands	RSA043	Bedrock	445,000	7,771,008	270	36	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA044	Bedrock	444,900	7,771,008	269	34	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA124	Bedrock	444,700	7,771,008	265	24	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA125	Bedrock	444,800	7,771,008	268	34	-90	350	10585	1997
Rishton (Gold)	McPhersons	MPA001	Bedrock	448,090	7,769,358	257	12	-90	350	10585	1996
Rishton (Gold)	McPhersons	MPA002	Bedrock	448,145	7,769,343	259	12	-90	350	10585	1996
Rishton (Gold)	McPhersons	MPA003	Bedrock	448,200	7,769,328	259	12	-90	350	10585	1996
Rishton (Gold)	McPhersons	MPA004	Bedrock	448,255	7,769,313	260	16	-90	350	10585	1996
Rishton (Gold)	McPhersons	MPA005	Bedrock	448,310	7,769,298	262	14	-90	350	10585	1996
Rishton (Gold)	McPhersons	MPA006	Bedrock	448,365	7,769,283	262	15	-90	350	10585	1996
Rishton (Gold)	McPhersons	MPA007	Bedrock	448,420	7,769,268	261	21	-90	350	10585	1996
Rishton (Gold)	McPhersons	MPA008	Bedrock	448,475	7,769,253	263	19	-90	350	10585	1996
Rishton (Gold)	McPhersons	MPA009	Bedrock	448,530	7,769,238	263	12	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA018	Bedrock	450,800	7,772,008	249	20	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA019	Bedrock	450,700	7,772,008	244	12	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA020	Bedrock	450,600	7,772,008	242	14	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA021	Bedrock	450,500	7,772,008	247	12	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA022	Bedrock	450,400	7,772,008	248	13	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA030	Bedrock	450,270	7,772,008	248	17	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA031	Bedrock	450,280	7,771,958	250	14	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA032	Bedrock	450,500	7,771,408	262	11	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA033	Bedrock	450,500	7,771,208	267	10	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA034	Bedrock	450,400	7,771,208	274	4	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA035	Bedrock	450,300	7,771,208	280	12	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA036	Bedrock	450,200	7,771,208	280	27	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA037	Bedrock	450,100	7,771,208	279	27	-90	350	10585	1996

Company	Target	HoleID	Hole Type	East (MGA)	North (MGA)	RL	Depth (m)	Dip (°)	Azimuth (° Mag)	Licence	Year
Rishton (Gold)	Rishton Sands	RSA038	Bedrock	450,000	7,771,208	278	33	-90	350	10585	1996
Rishton (Gold)	Rishton Workings	RSA045	Bedrock	449,200	7,770,973	252	8	-90	350	10585	1996
Rishton (Gold)	Rishton Workings	RSA046	Bedrock	449,200	7,771,023	252	9	-90	350	10585	1996
Rishton (Gold)	Rishton Workings	RSA047	Bedrock	449,200	7,771,073	252	13	-90	350	10585	1996
Rishton (Gold)	Rishton Workings	RSA048	Bedrock	449,200	7,771,123	249	15	-90	350	10585	1996
Rishton (Gold)	Rishton Workings	RSA049	Bedrock	449,200	7,771,173	255	10	-90	350	10585	1996
Rishton (Gold)	Rishton Sands	RSA103	Bedrock	450,400	7,771,808	256	15	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA104	Bedrock	450,500	7,771,808	256	16	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA105	Bedrock	450,600	7,771,808	248	15	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA106	Bedrock	450,800	7,771,808	250	15	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA107	Bedrock	450,330	7,771,808	258	31	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA108	Bedrock	450,200	7,771,808	258	17	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA109	Bedrock	450,700	7,771,808	246	13	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA110	Bedrock	450,500	7,771,608	257	25	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA111	Bedrock	450,600	7,771,608	254	18	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA112	Bedrock	450,700	7,771,608	251	25	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA113	Bedrock	450,400	7,771,608	262	26	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA114	Bedrock	450,300	7,771,608	264	36	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA115	Bedrock	450,200	7,771,608	265	33	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA116	Bedrock	450,100	7,771,608	263	25	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA117	Bedrock	450,600	7,771,408	254	16	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA118	Bedrock	450,400	7,771,408	268	22	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA119	Bedrock	450,300	7,771,408	271	24	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA120	Bedrock	450,200	7,771,408	272	38	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA121	Bedrock	450,100	7,771,408	271	39	-90	350	10585	1997
Rishton (Gold)	Rishton Sands	RSA122	Bedrock	450,000	7,771,408	275	34	-90	350	10585	1997

Company	Target	HoleID	Hole Type	East (MGA)	North (MGA)	RL	Depth (m)	Dip (°)	Azimuth (° Mag)	Licence	Year
Rishton (Gold)	Rishton Sands	RSA123	Bedrock	449,900	7,771,208	273	39	-90	350	10585	1997
Union Oil Developme nt Corp	Red Dust	RD001	Percussion	446,447	7,771,037	236	30	-55	17	4528	1988
Union Oil Developme nt Corp	Red Dust	RD002	Percussion	446,457	7,771,048	238	30	-57	17	4528	1988
Union Oil Developme nt Corp	Red Dust	RD003	Percussion	446,438	7,771,028	237	53	-55	17	4528	1988
Union Oil Developme nt Corp	Red Dust	RD004	Percussion	446,423	7,771,092	237	28	-55	17	4528	1988
Union Oil Developme nt Corp	Red Dust	RD005	Percussion	446,402	7,771,073	238	30	-55	17	4528	1988
Union Oil Developme nt Corp	Red Dust	RD006	Percussion	446,468	7,770,976	239	38	-55	17	4528	1988
Union Oil Developme nt Corp	Red Dust	RD007	Percussion	446,490	7,770,957	241	20	-55	17	4528	1988
Union Oil Developme nt Corp	Red Dust	RD008	Percussion	446,421	7,771,051	238	26	-55	17	4528	1988
Union Oil Developme nt Corp	Red Dust	RD009	Percussion	446,367	7,771,120	240	30	-55	17	4528	1988
Union Oil Developme nt Corp	Red Dust	RD010	Percussion	446,233	7,771,148	240	40	-55	17	4528	1988
Union Oil Developme nt Corp	Red Dust	RD011	Percussion	446,198	7,771,104	241	30	-55	17	4528	1988
Union Oil Developme nt Corp	Red Dust	RD012	Percussion	446,507	7,771,015	239	20	-55	17	4528	1988
Union Oil Developme nt Corp	Red Dust	RD013	Percussion	446,445	7,770,996	236	70	-60	17	4528	1988
Union Oil Developme nt Corp	Red Dust	RD014	Percussion	446,398	7,771,029	239	93	-60	17	4528	1988
Union Oil Developme nt Corp	Red Dust	RD015	Percussion	446,380	7,771,052	237	92	-60	17	4528	1988
Newcrest Operations	Seventy Mile Mount	FEN001	RC / Diamond	431,808	7,761,602	351	383	-47	191	10203	2004
Newcrest Operations	Seventy Mile Mount	FEN002	RC / Diamond	431,811	7,761,181	330	471	-55	349	10203	2004
Newcrest Operations	Gold & Black	FEN003	RC / Diamond	430,720	7,761,511	311	450.3	-55	180	10203	2004

Company	Target	HoleID	Hole Type	East (MGA)	North (MGA)	RL	Depth (m)	Dip (°)	Azimuth (° Mag)	Licence	Year
Newcrest Operations	Middle Mount	FEN004	RC / Diamond	431,355	7,761,248	314	450	-50	211	10203	2004
Newcrest Operations	Black Knight	FEN005	RC / Diamond	429,682	7,759,881	324	867.6	-55	165	10203	2004
Newcrest Operations	Breccia Knoll	FEN006	RC / Diamond	430,115	7,760,743	312	410.8	-55	160	10203	2004
Newcrest Operations	Matthews Pinnacle	FEN007	RC / Diamond	429,646	7,760,107	348	627.6	-61	172	10203	2005
Newcrest Operations	Matthews Pinnacle	FEN008	RC / Diamond	429,726	7,760,549	314	657.6	-53	172	10203	2005
Newcrest Operations	Matthews Pinnacle	FEN009	RC / Diamond	429,137	7,759,621	304	702.4	-50	58	10203	2005
Newcrest Operations	Matthews Pinnacle	FEN010	RC / Diamond	429,690	7,758,942	302	1116.6	-51	4	10203	2005
Newcrest Operations	Matthews Pinnacle	FEN011	RC / Diamond	430,116	7,760,379	306	786	-50	152	10203	2007